Robots – the working class

Rage Against the Machine
Image via Wikipedia

I have found myself considering whether doom would really befall the world if we mass employed robots to do all of our dirty work. Would we be overrun by machines which rose up and challenged their creators? Would our environment be destroyed and over polluted? I think not. In fact our lives would be much more comfortable and we would have a lot more time.

Life on earth got a lot better around the 1800s, the dawn of the industrial age. In the two centuries following 1800, the world’s average per capita income increased over 10-fold, while the world’s population increased over 6-fold [see Industrial Revolution]. Essentially, machines, aka. very simplistic robots made human lives much better. With steam power and improved iron production, the world began to see a proliferation of machines which could make fabrics, work mines, machine tools, increase production of consumables, enable and speed up the construction of key infrastructure. Importantly, it is from the industrial revolution from which the term Luddite originated, those who resisted machines because their jobs were offset.

We now find ourselves 200 or so years later, many of us in very comfortable homes, with plenty of time to pursue hobbies and leisure. There does however, remain scope for continued development, allowing machines and robots to continue to improve the lives of people. It is understood that one or more patents actually delayed the beginning of the industrial age, and of course is why I advocate the Technology Development Zones which have relaxed rules regarding patents. However, I believe there is a very entrenched Luddite culture embedded into society.

Now being the organiser of the campaign, I have been accused of being a Luddite myself. However no progress has lasted without a sound business case. Furthermore, Luddites of the industrial revolution were specifically those put out of business by the machines.

Therefore the current Luddites are currently or potentially:

  • The Automotive Industry status quo. – Movement to Electric Cars will make hundreds of thousands redundant. Consider how simple an electric car is {Battery, Controller, Motor, Chassis, Wheels, Steering}, and how complicated combustion engines are with the addition and weight of the radiator, engine block, oil, timing, computer,… And all the component manufacturers, fitters, mechanics and further supporting industries that will be put out of business.
  • The Oil industry (and LN2) – Somewhat linked to the Automotive industry. Energy could very well be transmitted through a single distribution system – electricity – at the speed of light. No more oil tankers, no more service stations, no more oil refineries, no more oil pipelines, no more oil mining, no more petrol trucks, no more oil spills. (The replacement for oil needs to be as economical or more economical – no ideologies here).
  • Transport industry – Buses, Trains, Trucks, Taxis, Sea Freight and even air travel all currently employ many thousands to sit in a seat and navigate their vehicle. Technology exists to take over and do an even better job. It’s not just the safety concerns delaying such a transition but also the Luddites (and patent squatters).
  • Farming – The technology is possible. We could have economical fruit picking machines, and many mega farm operations already have automatic harvesters for grain. Imagine all those rural towns having already under threat of becoming ghost towns having to contend with technology taking replacing hard workers.
  • Manufacturing – Is already very efficient, but we still see thousands of people on production lines simply pressing a button. Most manufacturing jobs could be obliterated with only one or two required to overlook a factory – how lonely.
  • House Wifes – Are possibly not Luddites, given many would relish even more time for leisure and their family, however so many of their tasks could be completely centralised and automated. Cooking and associated appliances could be completely abolished, why buy an oven, dishwasher, sink, fridge, freezer, cupboards, dinnerware, pots, pans, stove, and then spend 1-2 hours a day in the kitchen and supermarket when you could potentially order your daily meals from an industrial kitchen where all meals are prepared by robots for a fraction of the cost and time?
  • Construction – It’s amazing how many people it takes to build a skyscraper or house. Why does it still require people to actually build them? Why can’t houses be mass pre-fabricated by machines in factories then assembled by robots on-site? How many jobs would be lost as a result?
  • Services sector – There are many services sector jobs where software and robots could easily be designed and built to relieve such workers from their daily tasks. Accounting could be streamlined such that all business and personal finances are managed by software completely, with robots now aiding in surgery why can’t robots actually perform the surgery or give a massage, or pull a tooth? Why are there so many public servants dealing with questions and answers and data-entry when we have technology such as that found in WATSON able to take over such tasks? Even many general practitioners are resisting the power available for self-diagnosis – do you think they’ll fund the further development of such tools?
  • Mining – Is as crude as grain farming and could easily be further automated, making thousands and thousands redundant in mines, and even those surveying future mining sites.
  • Education – How important is it to have children learn as much as possible while they’re young (beyond simple skills such as reading, writing and arithmetic), when the whole world could be run by software and robots? When complicated questions can be answered by a computer instead of a professor? Why lock children behind desks for 20 hours a week when they could be out playing?
  • Bureaucracy – With no workers there would be no unions and no union bosses, no minimum wage, no work safety inspector…
  • Military – (Ignoring the ideology of world peace) We already see the success of the UAV, an aircraft which flies autonomously only requiring higher lever command inputs for it’s mission. Why enhance soldiers when you can have robot soldiers? War could even be waged without blood, with the winner having enough fire-power at the end to force the loser to surrender outright (quite ridiculous in reality – I know).
  • Care – There are many employed to look after sick and elderly. Even though the work can be challenging and the pay often low it’s still a job, a job that robots can potentially do instead.
With time such a list could easily be expanded to encompass everyone. Are we all collectively resisting change?
With a world full of robots and software doing everything, what do humans do with 100% unemployment? Do we all dutifully submit our resumes to Robot Inc three times a week? Would we all get on each others nerves? Do we need to work? Would we lose all purpose? Ambition? Dreams?
To best understand how a robot utopia works, just simplify the equation to one person – yourself on an island. You could work everyday of your life to make sure you have enough water, food and shelter or if you arrived on the island with a sufficient compliment of robots you could enjoy being stranded in paradise. Every step in between from doing everything yourself toward doing nothing yourself, sees your level of luxury increasing.
There’s no doubt that the world will be divided into two classes, those that are human and have a holiday everyday, and those that are robots – the working class.
Enhanced by Zemanta

Revisiting DIDO Wireless

A wireless icon
Image via Wikipedia

I’ve had some time to think about the DIDO wireless idea, and still think it has a very important part to play in the future – assuming the trial conducted of 10 user nodes is truthful. Before I explore the commercial benefits of this idea, I will first revisit the criticisms as some have merit, and will help scope a realistic business case.



  • One antenna per concurrent node – The trial used 10 antenna for 10 user nodes. Each antenna needs a fixed line or directional wireless backlink – this would imply poor scalability of infrastructure. [Update: This is likely so, but Artemis claim the placement of each antenna can be random – whatever is convienient]
  • Scalability of DIDO – We are told of scaling up to 100s of antenna in a given zone. I question the complexity of the calculations for spatial dependent coherence, I believe the complexity is exponential rather than linear or logarithmic. [Update: Artemis pCell website now claims it scales linearly]
  • Scalability of DIDO controller – Given the interdependence on signals, is the processing parellelisable? If not this also limits the scale of deployment. [Update: Artemis claim it scales linearly]
  • Shannon’s Law not broken – The creators claim breaking the Shannon’s law barrier. This appears to be hyperbole. They are not increasing the spectrum efficiency, rather they are eliminating channel sharing. The performance claims are likely spot on, but invoking “Shannon’s Law” was likely purely undertaken to generate hype. Which is actually needed in the end, to get enough exposure for such a revolutionary concept.


Discussion surrounding neutralised claims which may be reignited, but are not considered weaknesses or strengths at this point in time.

  • Backhaul – Even though the antenna appear to require dispersed positioning, I don’t believe that backhaul requirements to the central DIDO controller need to be considered a problem. They could be fixed line or directional wireless (point to point). [Update: This is not really a problem. Fibre is really cheap to lay in the end for backhaul, it’s most expensive for last-mile. Many Telcos have lots of dark fibre, not being used and Artemis is partnering with Telcos, rather than trying to compete with them]
  • DIDO Cloud Data Centre – I take this as marketing hyperbole. Realistically a DIDO system needs a local controller, all other layers above such a system are distractions from the raw technology in question. And as such, the communication links between the local controller and antenna need not be IP transport layer links, but would rather be link layer or even physical layer links.
  • Unlimited number of users – Appears to also be hyperbole, there is no technological explanation for such a sensational claim. We can hope, but not place as Pro until further information is provided. [Update: It does scale linearly, so this is a fair claim when compared to current Cell topology or if pCell was was limited to exponential processing load]
  • Moving User Nodes – Some may claim that a moving node would severely limit the performance of the system. However this pessimistically assumes a central serial CPU based system controls the system (a by-product of Reardens “Data Centre” claims). In reality I believe it’s possible for a sub-system to maintain a matrix of parameters for the main system to encode a given stream of data. And all systems may be optimised with ASIC implementation. Leaving this as a neutral but noteworthy point.
  • Size of Area of Coherence – Some may claim a problem with more than 1 person in an area of coherence, assumed to be around one half wavelength. How many people do you have 16cm away from you (900Mhz)? Ever noticed high density urbanisation in the country? (10-30Mhz for ionosphere reflection – <15M half wavelength) [Update: demonstrations have shown devices as close as 1cm away from each other – frequency may still be a limiting factor of course, but that is a good result]
  • DIDO is MIMO – No it’s very similar, but not the same and is likely inspired by MIMO. Generally MIMO is employed to reduce error, noise, multipath fading. DIDO is used to eliminate channel sharing. Two very different effects. MIMO Precoding creates higher signal power at a given node – this is not DIDO. MIMO Spatial multiplexing requires multiple antenna on both the transmitter and receiver, sending a larger bandwidth channel via several lower bandwidth channels – DIDO nodes only need one antenna – this is not DIDO. MIMO Diversity Coding is what it sounds like, diversifying the same information over different antenna to overcome wireless communication issues – this is not DIDO. [Update: Artemis and the industry and now standardising calling it a C-RAN technology]
  • 1000x Improvement – Would this require 1000 antenna? Is this an advantage given the amount of antenna required? MIMO is noted to choke with higher concurrency of uses. Current MIMO systems with 4 antenna can provide up to 4x improvement – such as in HSPDA+. Is MIMO limited in the order of 10s of antenna? Many many questions… [Update: This is likely so, but Artemis claim the placement of each antenna can be random – whatever is convenient]


  • Contention – Once a user is connected to a DIDO channel, there is no contention for the channel and therefore improved latency and bandwidth.
  • Latency – Is a very important metric, perhaps as important as bandwidth. Latency is often a barrier to many innovations. Remember that light propagates through optical fibre at two-thirds the speed of light.
  • Coverage – It seems that DIDO will achieve coverage and field less black spots than what is achievable with even cellular femtocell. Using new whitespace spectrum, rural application of pCell would be very efficient, and if rebounding off the Ionosphere is still feasible, the answer to high speed, high coverage rural internet.
  • Distance – DIDO didn’t enable ionosphere radio communications, but it does make ionosphere high bandwidth data communication possible. Elimination of inter-cell interference and channel sharing make this very workable.
  • Physical Privacy – The area of coherence represents the only physical place the information intended for the user can be received and sent from. There would be potential attacks on this physical characteristic, by placing receivers adjacent to each DIDO antenna, and mathematically coalescing their signals for a given position. Of course encryption can still be layered over the top.
  • Bandwidth – The most obvious, but perhaps not the most important.
  • [New] Backward Compatibility – Works with existing LTE hardware in phones. Works better if using a native pCell modem with better latency performance particularly. Seamless handoff to cell networks, so it can co-operate.
  • [New] Wireless Power – Akbars (See Update below) suggested this technique could be used for very effective Wireless Power, working over much larger distances than current technology. This is huge!

Novel Strength

This strength needed particular attention.

  • Upstream Contention Scheduling – The name of this point can change if I find or hear of a better one. (TODO…)

Real World Problems

Unworkable Internet-Boost Solutions

I remember reading of a breakthrough where MEMS directional wireless was being considered as an internet boost. One would have a traditional internet connection and when downloading a large file or movie, the information would be sufficiently cached in a localised base station (to accommodate a slow backlink or source) and then forwarded to the user as quickly as possible. This burst would greatly improve download times and a single super speed directional system would be enough to service thousands of users given its’ extreme speed and consumers limited need for large transfers. Of course even such a directional solution is limited to line of sight, perhaps it would need to be mounted on a stationary blimp above a city…

Mobile Call Drop-outs

How often do you find yourself calling back someone because your call drops out? Perhaps it doesn’t happen to you often because you’re in a particularly good coverage area, but it does happen to many people all the time. The productivity loss and frustration is a real problem which needs a real solution.

Rural Service

It is very economical to provide high-speed communication to many customers in a small area, however when talking of rural customers the equations are reversed. Satellite communication is the preferred technology of choice, but it is considerably more expensive, is generally a lower bandwidth solution and subject to poor latency.

Real World Applications

The anticipated shortcomings of DIDO technology need not be considered as deal breakers for the technology. The technology still has potential to address real world problems. Primarily we must not forget the importance/dominence of wireless communications.

Application 1: A system could be built such that there may be 10 areas of coherence (or more), and can be used to boost current technology internet connections. One could use a modest speed ADSL2+ service of 5Mbps and easily browse the bulk of internet media {Text, Pictures} and then still download a feature-length movie at gigabit speeds when downloaded. This is a solution for the masses.

Application 2: DIDO allows one spectrum to be shared without contention, but that spectrum need not be a single large allocation of spectrum, it could mean a small (say 512Kbps) but super low latency connection. In a 10 antenna system, with 20Mhz of spectrum and LTE-like efficiency this could mean 6000 concurrent active areas of coherence. So it would enable very good quality mobile communication, with super low latency and practically no black-spots. It would also enable very effective video conferencing. All without cellular borders.

Applications 3 and 4: The same as Applications 1 and 2, but using a long-range ionosphere rural configuration.


We still don’t know too much about DIDO, the inventors have surrounded their idea with much marketing hype. People are entitled to be cautious, our history is littered with many shams and hoaxes, and as it stands the technology appears to have real limitations. But this doesn’t exclude the technology from the possibility of improving communication in the real world. We just need to see Rearden focus on finding a real world market for its’ technology.


  • [2017-01-10] Finally, the hint text has dissappeared completely, to be replaced with
    • “supports a different protocol to each device in the same spectrum concurrently” – following up on their last update
    • “support multiple current and future protocols at once.” – this is a great new insight. They have right up top, that pCell supports 5G, and future standards. So without considering the increased capacity, customers don’t need to keep redeploying new hardware into the field.
    • “In the future the same pWave Minis will also support IoT” – there are standards floating around, and what better way to implement security for IoT, than physically isolated wireless coherence zones, and perhaps very simplistic modulation.
    • “precise 3D positioning” – This confirms one of my predictions, pCell can supercharge the coming autopilot revolution
    • “and wireless power protocols” – as I always suspected. However, it still seems impractical. This is likely just a candy-bar/hype statement.
    • “Or in any band from 600 MHz to 6 GHz” – it’s interesting to learn this specification – the limits of typical operation of pCell. I note they have completely abandoned long-wave spectrum (for now at least).
    • “pWave radios can be deployed wherever cables can be deployed” – I still think fibre/coax is going to be necessary, wireless backhaul is unlikely to be scalable enough.
    • “Typically permit-free” – does this refer to the wireless signal I wonder? Very interesting if so. It could also refer carrier licensing, because you’re only carrying data, information is only deduced back at the data centre.
    • “can be daisy-chained into cables that look just like cable TV cables” (from Whitepaper) – so perhaps long segments of coax are permitted to a base-station, but that base-station would likely require fibre out.
    • “pCell technology is far less expensive to deploy or operate than conventional LTE technology” – they are pivoting away from their higher-capacity message, now trying to compete directly against Ericson, Huawei, and others.
  • [2016-02-25] pCell will unlock ALL spectrum for mobile wireless. No more spectrum reservations. pCell could open up the FULL wireless spectrum for everyone! I hope you can grasp the potential there. Yesterday I read a new section on their website: “pCell isn’t just LTE”. Each pCell can use a different frequency and wireless protocol. This means you can have an emergency communication and internet both using 600Mhz at the same time meters away! In 10 years, I can see the wireless reservations being removed, and we’ll have up to TERABITS per second of bandwidth available per person. I’m glad they thought of it, but this is going to be the most amazing technology revolution of this decade, and will make fibre to the home redundant.
  • [2015-10-03] It’s interesting that you can’t find Hint 1 on the Artemis site, even when looking back in history (Google), in fact the date of 2015-02-19 it reads “Feb 19, 2014 – {Hint 2: a pCell…”, which is strange given my last update date below. Anyway the newest Hint may reveal the surprise:
    • “Massless” – Goes anywhere with ease
    • “Mobile” – outside your home
    • “Self-Powered” – either Wireless Power (unlikely) or to wit that this pCell is like some sort of Sci-Fi vortex that persists without power from the user.
    • “Secure” – good for privacy conscious and/or business/government
    • “Supercomputing Instance” – I think this is the real clue, especially given Perlman’s history with a Cloud Gaming startup previously.
    • My best guesses at this stage in order of likelihood:
      • It’s pCell VR – already found in their documentation, and they just haven’t updated their homepage. VR leverages the positioning information from the pCell VRI (virtual radio instance) to help a VR platform both with orientation as well as rendering.
      • Car Assist – Picks up on “Secure” and the positioning information specified for VR. VR is an application of pCell to a growing market. Driverless is another growing market likely on their radar. Driverless cars have most trouble navigating in built up, busy environments and particularly round abouts. If pCell can help in any way, it’s by adding a extra absolute position information source this cannot be jammed. Of course the car could also gain great internet connectivity too, as well as tracking multiple vehicles centrally for more centralised coordination.
      • Broader thin-client computing, being beyond “just communications”, although one can argue against that – pCell is communications an enabler. This would include business and gaming.
      • Emergency Response. Even without subscription it would be feasible to track non-subscribers location.
  • [2015-02-19] Read this article for some quality analysis of the technology – [Archive Link] – Old broken link:
  • [2015-02-19] Artemis have on their website – “Stay tuned. We’ve only scratched the surface of a new era.…{Hint: pCell technology isn’t limited to just communications}’ – I’m gunning that this will be the Wireless Power which Akbars suggested in his blog article. [Update 2015-10-03 which could be great for electric cars, although efficiency would still be quite low]
  • [2016-06-02] Technical video from CTO of Artemis –
    • Better coverage – higher density of access points = less weak or blackspots
    • When there are more antenna than active users, quality may be enhanced
    • Typical internet usage is conducive for minimising number antenna for an area
    • pCell is not Massive MIMO
    • pCell is Multi User Spatial Processing – perhaps MU-MIMO [see Caire’03, Viswanath’03, Yu’04]
    • According to mathematical modelling, densely packed MIMO antenna cause a large radius of coherent volume. Distributed antenna minimises the radius of coherent volume. Which is intuitive.
    • see 4:56 – for a 3D visulasation of 10 coherent volumes [spatial channels with 16 antennas. Antenna are 50m away from users – quite realistic. Targetting 5dB sinr.
    • pCell Data Centre does most of the work – Fibre is pictured arriving at all pCell distribution sites.
    • 1mW power for pCell, compared to 100mW for WiFi. @ 25:20
Enhanced by Zemanta