Shorter Work Weeks – A forgotten lever for the Automation Age

It was close to the time of the industrial revolution, when a trade union in England lobbied for 888, 8 hours for work, 8 hours for recreation and 8 hours for sleep. It’s important to note here, that the industrial revolution made quite a few artisans unemployed, but with the wealth from the automation, made this policy change possible.

Hey Elon Musk, Artificial Intelligence will not be bad like you say.

It’s everywhere in the media at the moment [2017-02-19]. Elon Musk crystal balling doom and gloom about automated intelligence, when he’s in a country made rich by automation.

The thing is, the less we do robotic mundane things, the richer economies get, and the more human we become. Please, watch this: https://www.youtube.com/watch?v=AsACeAkvFLY&t=616s, it’s very well articulated.

Now, I have covered all this before in my previous blog article [Robots The Working Class], and there will be pockets of mass unemployment, where Government policy has propped up flailing businesses, but overall, this transition will be quite smooth and again hugely beneficial.

But I have continued thinking about this, and made an important realisation: We need to continue to reduce our work week hours, to keep most people in some sort of traditional employment.

Back in the industrial revolution, this realisation took a while, and required a workers revolt (more about the hours, than sharing the jobs). The sooner Government masters this dusty old lever of working hours, the better.

Rather than campaigning for unemployment benefits, where there’s the damaging problem of those bludging off others, I believe Government should continue to reduce the maximum hours in the work week, and keep more people employed.

This would start in the primary and secondary industries which are being disrupted the most by automation. And would begin as a reduction of another half an hour every 5 years, and increase this pace as needed.

A lot more research needs to be done here, but this will be required as we leave the information age, into the automated age.

(This was written without much review, this article will need more consideration, editing, and I’m hoping to research this whole domain of the work week more and more. BTW, workers might get paid more as their work week reduces, so their pay is the same.)

Geelong needs a Makerspace

No one knows what you’ll discover or create. You’re unique. You have seen things, that others haven’t, and face a set of problems unique to you and your friends.

So when you play with different tools and get exposed to bigger possibilities, there’s no telling what will happen.

Here’s one example of the unexpected you see in a makerspace. I bought this thermal imaging camera, a FlirOne, for an ecology project in Cape Otway, to track predators.

Have you ever looked at a cup of tea like this before?

First you turn on the kettle. You can see the water level where it’s the hottest.

Bring it to the boil. You can’t see that line anymore, the steam has made the pot uniformly hot.

Pour (don’t forget to prepare the tea bag beforehand). Looks like lava.

Get some nice cold milk. You can see the reflection on the kettle (technically it’s not reflecting coldness – I know).

All marble-y – and that’s after mixing the milk. Probably just standard heat convection there.

Here are some videos:

I know of at least one Makerspace, space in the making for Rock O’Cashel Lane, in the CBD. Make sure you get behind Kathy Reid, and Jennifer Cromarty, and make this place legendary.

Technomotive – a new word for a digital age

Tech – no – mo – tive (adjective)

  1. A response in a person to hype over quantities, subjective quality, parameters and perceived possibilites.
  2. Discarding or overriding other important factors in a debate or decision, due to [1]
  3. Examples:
    • Being an audiophile she bought the $5000 cable, blinded by her technomotive weakness.
    • Like any car salesman, they used technomotive language, reading out the 0-100kmph acceleration time, and power output of the engine.
    • The politician knew the 100mbps figure would be technomotive to journalists and tax-payers alike.
    • Technomotive descriptions held the audience’s attention
    • The entire domain of technomotive persuasion is largely unexplored
  4. Related forms:
    Technomotively (adverb)
    Technomotiveness, Technomotivity (noun)

The need for a new word

Pathos, Ethos and Logos were recognised in ancient Greek times. Back then there were no computers or technology as we perceive it, but there were quantities. It would have been useful, but not as important as the information age. Other traditional motivators of Pathos, Ethos and Logos contribute. The desire to brag to friends and family are obvious, but not a necessary underlying motivator. The key difference in these times, is the pace of change introduces a tangible factor of

The key difference in these times, is the pace of change introduces a tangible factor of obsolescence, and the environment of expectations and culture that arise. A person who considers technomotive factors, is not necessarily technomotively pursuaded, if they balance other considerations well. Although obsolescence is objectively real, this rarely justifies getting the best and paying a premium. (Although there are logical exceptions, such as Military and Space Science)

Technomotive persuasion been a common technique for over 100 years, but never had a name. It is a word which helps analyze persuasive writing, and arguments wherever quantities or qualities are expressed or experienced, but typically in a technology context. This new word provides a handle for analysis, and is the beggining of deeper research of the domain.

A work in progress

I identified the need for this word about 6 years ago, with several attempts to articulate and refine. I hope others will find it useful and contribute more ideas and research in this domain. I’ll continue to write more below, but hopefully the writing above is a sufficient and stable definition to move forward with.

Futher examples

Lots of examples can be found in marketing material and article headlines, here are some examples of Technomotive language (in quotes):

  •  “Experience mind-blowing, heart pumping, knee shaking PhysX and …” – Technomotive language, appeals to the desire to have the best possible gaming experience.
  • “Today is so yesterday” – Technomotive language, appealing to desire to have the latest technology
  • “Planning to overclock your shiny new Core i5 system? Kingston reckons it has the RAM you need.” – Technomotive language, appeals to the desire to have the latest and most powerful technology.
  • The skyscraper was made up of 4,000T of steel and concrete
  • The new dam holds 4000GL of water, enough to…

More on Ignoring Economics

A good example is building one’s own PC. People with the money will often splurge on the best of everything, followed by benchmarking, to feed their technomotive desire for performance. When economics is considered, this isn’t the best choice. Last years technology performs 20% less, but will cost 50-80% less. Economics is less of a consideration when someone is driven by technomotive desire.
In decisionmaking, in the case of building a PC, it might be for gaming. One might justify the additional cost for the better quality of gameplay (another technomotivation). Rather than considering that economics are unfavorable in a judgemental tone, one should rather reflect that technomotive desires have the biggest influence.

Ideas

Which may be used to update the core definition or the section [need for a new word]

  • “Accentuate quantities”
  • Informal word: “drooling”
  • Decouple from obsolescence – while not in the definition, it is in the detail. Obsolescence is related, but I suspect should be kept separate to clarify the definition of technomotive. The more existing terms are explored and used, the better Technomotive can be refined.
    • Technomotive – quanitities.
    • Obsolescence –
    • Nostalgia – One doesn’t think of an old computer in terms of Technomotive, we consider it obsolete, but it can have appeal by way of nostalgia.

Keywords

  • Persuasion
  • Horsepower
  • Kilowatt
  • Speed
  • Power

Personal Drones – Flying “Cars” for All

Great ideas and progress rarely come from well-worn paths. How long have we waited for Flying Cars? Many have tried turning cars into sort of planes, or jet hovering machines.

Now it’s possible. Not by making cars fly, but making drones bigger to carry people.

Drones are main-stream and mature. The industry grappled with air-space and privacy rules and created auto-pilot, stability systems, and backup redundancy. Engineers have been reinvigorated to develop new algorithms and mechanical structures.

All of this is great for personal transport through the skies. With Flying Cars, we were expected to have a recreational pilot license, and although those engineers would have dreamed of auto-pilot, that was unobtainable. Drones have been a key stepping stone, and newfound success of electric vehicles also pave a new path.

I suspect there are 10-20 years to go. The most critical element remaining is battery capacity. There are workarounds and hybrids, but when batteries get a science boost you’ll see a race to market from many key companies.

So stop hoping for Flying Cars, and start saving for your Personal Drone Transport. (And hopefully they find a good name for it)

Updates:

Why did Open Source Bounties Fail?

I’m shocked. I thought Bounties would supercharge Open Source development. You were the chosen one! (cringe)

So today, I wanted to post a bounty for Stasher. I did so on BountySource, but then I realised it was broken and abandoned. I looked further afield and it’s the same story, a digital landscape littered with failures.

Bounty Source

Is one of the better ones, limping along. They need a serious financial backer to grow their community faster.

  1. They seem to have a lot of server issues. Have a look at their recent twitter feed [https://twitter.com/Bountysource]
  2. When I posted my bounty, I did expect a tweet to go out from their account (as per my $20 add-on). Nothing. Either that subsystem is broken, or it has never been automated.
  3. Bounty Search is broken – “Internal server error.” in the console log.
  4. We know what I think about good security architecture. If people can’t talk about security correctly, it doesn’t matter if they know about bcrypt, but can they properly wield its power?
  5. No updates on Press since 2014

Freedom Sponsors

They don’t have enough of a profile, to excite me about their future. This has been executed on a shoe-string budget apparently. (I’ll try posting a bounty here if the Bounty Source one lapses)

  1. Only 12 bounties posted this year (Jan-Nov) – only 4 of those have workers, 2 of those look inactive. But at least search works.
  2. Their last Tweet was 2012

Others

http://bountyoss.com/, http://cofundos.com/ are down.

Analysis

This shouldn’t have happened. It failed because these startups ran out of cash and motivation.

There is massive potential here. So far we’ve seen MySpace, we need Facebook execution. And whoever does this, needs a good financial backer with connections to help grow the community.

I hope to see an open source foundation, maybe Linux Foundation, buy Bounty Source.

Stasher – File Sharing with Customer Service

(This is quite a technical software article, written with software coders in mind)

It’s time for a new file sharing protocol. P2P in general is no longer relevant as a concept, and central filesharing sites show that consumers are happy with centralised systems with a web interface. I think I have a good idea for the next incremental step, but first some history.

It’s interesting that P2P has died down so much. There was Napster and other successes which followed, but BitTorrent seems to have ruled them all. File discovery was lost, and with Universal Plug and Play a big security concern, even re-uploading is not on by default.

P2P is no longer needed. It was so valuable before, because it distributed the upload bandwidth, and also anonymised somewhat. But bandwidth continues to fall in price. MegaUpload and other like it were actually the next generation, and added some customer service around the management of the files, and charged for premium service. Dropbox and others have sort of carved out even more again.

Stash (which is hopefully not trademarked), is my concept to bring back discovery. It’s a different world, where many use VPNs and even Tor, so we don’t need to worry about security and anonymity.

It’s so simple, it’s easy to trust. With only a few hundred lines of code in a single file, one can compile their own, on Windows in seconds. So there can be no hidden backdoors. Those users who can’t be bothered with that, can download the application from a trusted source.

It works by being ridiculously simple. A dumb application which runs on your computer, is set-up to point to one or more servers. It only operates on one folder, the one it resides in. From there the servers control Stasher. A client can do any of the following, and can ban a server from doing a particular action.

And that’s it. It’s so basic, you should never have to update the client. New features should be resisted. Thumbnails should be generated on the server – because there is time and bandwidth to simply get the whole file.

All with varying software on the server, but the same Stash client. There is no direct P2P, however several servers can coordinate, such that a controller server can ask a client to upload to another specific server. Such a service can pre-package the Stash client with specific servers. Then throughout the lifetime, the client server list can be updated with new servers.

I’m thinking of building this, but I’m in no rush. I’ll make it open source. Can you think of any other applications for such a general-purpose file sharing framework?

For more information, see https://bitbucket.org/merarischroeder/stasher/wiki/Home

Appendix

Security measures ideas:

  • [Future] Code Virtual Machine
    • Only System and VM namespaces used
    • VM namespace is a separate small DLL which interacts with the system { Files, Network, System Info }
    • It’s easier to verify that the VM component is safe in manual review.
    • It’s easy to automatically ensure the application is safe
    • Only relevant for feature-extended client, which will span multiple files and more
  • [Future] Security analyser works by decompiling the software – ideally a separate project

Remaining problems/opportunities:

  • Credit – who created that original photo showing on my desktop? They should get some sort of community credit, the more votes they get. Need some sort of separate/isolated server which takes a hash and signs/stores it with datetime and potentially also with extra meta-data such as author-name/alias
    • Reviewers, while not as important should also be able to have their work registered somewhere. If they review 1000 desktop backgrounds, that’s time. Flickr for example could make a backup of such credit. Their version of the ledger could be signed and dated by a similar process.
  • Executable files and malware – 
    • AntiVirus software on the client
    • Trusting that the server makes such checks – eg. looking inside non-executables even for payloads. ie. image file tails.
  • Hacked controller
    • File filters on the client to only allow certain file types (to exclude executable files) – { File extensions, Header Bytes }
    • HoneyPot Clients – which monitor activity, to detect changes in behavior of particular controllers
    • Human operator of controller types in a password periodically to assure that it’s still under their control. Message = UTCTimestamp + PrivateKeyEncrypt(UTCTimestamp), which is stored in memory.

Food Forever?

What if we could save our spoiling food before it was too far gone? I often have half a litre of milk which spoils at the office and I have to tip it down the sink.

I’m no biochemist, so I’m hoping this idea finds a nice home with a real scientist who either debunks it or points the way forward.

Could we have a home appliance which could UHT leftover milk that we can use later or donate?

Are there other foods which could be preserved in such a way? I’m guessing most would be an ultra heat process. Like an autoclave, you need to kill all the bacteria with no regard for taste. If it’s meat, it might be tough, but it would at least be a better pet food than what’s in a can.

Problem?

Digital Things

The “Internet of Things” is now well and truly established as a mainstream buzzword. The reason for its success could be explored at length, however this term is becoming overused, just like “Cloud”. The term has come to mean many different things to different people in different situations. “Things” works well to describe technology reaching smaller items, but “Internet” is only a component of a broader field that we can call Digital Things.

This Digital Things revolution is largely driven by the recent accessibility of tools, such as Arduino, Raspberry Bi and more. Miniaturization of computing that stretches even the definition of embedded computing. Millions of people are holding such tools in their hands wondering what to do with them. They all experience unique problems, and we see some amazing ideas emerge from these masses.

In health, the quantified self may eventually see information flow over the internet, but that’s not what all the fuss is about. Rather, it’s about Information from Things. Measuring as much as we can, with new sensors being the enablers of new waves of information. We want to collect this information and analyse it. Connecting these devices to the internet is certainly useful to collect and analyse this information.

Then there are many applications for the Control of Things. Driverless cars are generally not internet connected, neither are vacuum robots, burger building machines, a novel 100k colour pen or many many more things. It would seem the of the term Internet of Things as inspiration limits the possibilities.

In the end, Digital Things is the most suitable term to describe what we are seeing happen today. We are taking things in our lives which normally require manual work, and using embedded electronics to solve problems, whether it be for information or control, the internet is not always necessary.

Lets build some more Digital Things.

Geelong has a clean slate

I hope you’re done. Q&A was your last chance to detox from any doom and gloom you had left.

The loss of jobs, particularly at Ford, is not a pleasant experience for retrenched workers, but there’s no changing the past. The fact is Geelong now has a clean slate to dream big, and driverless electric vehicles is a perfect fit for the future of manufacturing.

On Q&A last night, Richard Marles was spot on, describing the automotive industry as one of our most advanced in supporting technical innovation in Australia. But ironically, the industry together has missed the boat and was always on a trajectory with disaster.

I have been watching the industry, since 2010. I have observed the emerging phenomenon of the electric vehicle and the needful but lack of interest by our local automotive industry.  I have realised any automation is to be embraced despite the unpleasant short-term job losses. And still we’re about to miss a huge opportunity.

The public forum is full of emotion, desperation, finger pointing, and frankly ignorance.

Geelong, we have a clean slate.

Kindly watch this video, https://www.youtube.com/watch?v=CqSDWoAhvLU, it’s all Geelong needs to drop the past and grasp the future, share it with your friends and call up all the politicians you know. It’s been there the whole time, and this vision for Geelong is all we need to forget our sorrows. You won’t understand unless you see the video. We need to act now.

I have covered Electric Vehicles comprehensively in the past, but they’re today’s reality. We need to aim higher. Do Geelong even know anything about driver-less cars?

People are immediately cautious of change, which is why the technology needs to be tested and tested here in Geelong. This will be a great focal point for our retraining efforts. Imagine cheap transport and independence for the elderly and disabled. Cheaper, safer and faster deliveries. Reduced traffic congestion and elimination of traffic lights – no stopping! Cars that drop you off and pick you up will park out of town – what car parking problem? What will we do with all those empty car park spaces in the city? More green plants and al fresco dining?

But most importantly zero road fatalities. If this is the only reason, it’s all we need.

They are legal in California today. What stepping stones will we take to legalise fully driverless cars in Victoria? These massive technology companies will only move next to hospitable markets. Who is talking to Nissan and Tesla about building the next generation of electric driverless vehicles in Geelong? We have been given a clean slate, there are too many exciting opportunities around to waste any more time on self-pity!

Oh and trust me when I say, that’s just the tip of the iceburg – I’m not telling you everything, find out for yourself. Click all the links found in this article for a start, it’s what they’re for.

Hint: There’s more to come from me, including the idea to start a “Manufacturing as a Service” company for Automotive, just like Foxconn does for electronics in China, inviting the Ford/Alcoa workers, their investment, GRIIF investment, outside investors and Tesla. There’s lots more work to do, but it’ll be worth it.

Some more videos you should really watch:


Lets leave Javascript behind

Disclaimer: I am sure Javascript will continue to be supported, and continue even to progress in features and support, regardless of any Managed Web. Some people simply love it, with all the flaws and pitfalls, like a sweet elderly married couple holding onto life for each other.

It’s great what the web industry is doing with ECMAScript, from version 6 we will finally see something resembling classes and modules. But isn’t that something the software industry have had for years? Why do we continue to handicap the web with an inferior language, when there have always been better options? Must we wait another 2-3 years before we get operator overloading in ECMAScript 7?

The .Net framework is a rich standardised framework with an Intermediate Language (IL). The compiler optimisations, toolset and importantly the security model, make it a vibrant and optimised ecosystem which could be leveraged. It could have been leveraged years ago with a bare minimum Mono CLR.

Google Chrome supports native code, however it runs in a separate process and calls to the DOM must be marshalled through inter-process communication methods. This is not ideal. If the native code support was in the same process it would be a good foundation for Mono.

I believe it is possible, perhaps even trivial, to achieve this nirvana of a Managed Web. We just need to take small considered steps to get there, so here’s my plan.

  1. Simple native code in the same process – Javascript is currently executed on the main thread, presumably through the window message pump executing delegates. These delegates can simply forward to managed function delegates. But first we should be able to trigger an alert window through native code which is compiled inside the Google Chrome code base.
  2. Simple mono support – Fire up Mono, provide enough support in a Base Class Library (BCL) for triggering an alert. This time there will be an IL DLL with a class which implements an Interface for start-up.
  3. Fuller API – With the simple milestones above completed, a complete BCL API can be designed and implemented.
  4. Optimisations – For example, enumerating the DOM may be slowed by crossing the Managed/Unmanaged boundary? jQuery-like functions could be implemented in native code and exposed through the BCL.

Along the way, other stacks and browsers could also leverage our work, establishing support for at least Java as well.

Example API:

IStartup

  • void Start(IWindow window) – Called when the applet is first loaded, just like when Javascript is first loaded (For javascript there isn’t an event, it simply starts executing the script from the first line)

IWindow
see http://www.w3schools.com/jsref/obj_window.asp

IDocument
see http://www.w3schools.com/jsref/dom_obj_document.asp

Warm up – Possible disadvantage

Javascript can be interpreted straight away, and there are several levels of optimisation applied only where needed, favouring fast execution time. IL would need to be JIT’d which would be a relatively slow process, but there’s no reason why it cannot be AOT compiled by the web server. Still I see this as the biggest disadvantage that needs to be front of mind.

Other people around the web who want this

http://tirania.org/blog/archive/2012/Sep-06.html

 

Enhanced by Zemanta

Civilisation Manual

Lakshadweep, comprising tiny low-lying islands...
Image via Wikipedia

What would happen if an asteroid struck our planet and left a handful of people to restart civilisation? Or if you and few people washed up on an uninhabited island with nothing but the shirt on your back? Many would picture building huts, scavenging for food, starting some basic crops if possible. But that would be it, the limit. You wouldn’t comprehend completely rebuilding civilisation and luxuries available as they are today. But I do, I’m curious, what would it take? If all you could take with you was a book, what would be written in that book, what does the Civilisation Manual say?

Whenever there is talk of civilisation it seems that all you hear is philosophy, but seldom the practicality of achieving it. I assert that the creation of such a Civilisation Manual would be a useful undertaking, not so much for its hypothetical uses, but rather for the ability to teach how modern economies work. I believe that such a book should be able to contain all, if not more, information taught to children in a school. Such a book might be very large.

There would also be additional questions to be said of the hypothetical end of the world scenario. How long would it take

LONDON, ENGLAND - FEBRUARY 21: The sign for t...
Image by Getty Images via @daylife

to rebuild a civilisation to current day technology? What tools would most quickly speed up the process? Is there a minimum amount of people required for this to work? What level of intelligence is required to execute? Just one genius? How long until the female primeval desire for shopping is satisfied? And the perfect shoe manufactured?

Encyclopaedia Beliana 1
Image via Wikipedia

I would love to see a community website started to collect such information. We already have Wikipedia, but you are not told the intimate detail of how to find iron ore, how to cast iron, how to produce flour from wheat or how to build a crude resistor or capacitor to help you make more refined components. It is this knowledge which is hard to find, perhaps we are forgetting how we build a digital civilisation.

Also, given the opportunity to build a civilisation from scratch, there may be some interesting ideas which could be included, never encountered in history before. For example, the book could focus on automation, relieving the humans from hard and repetitive tasks. This could go even further than what is achieved today. In 10 years, perhaps robots will be washing and ironing clothes, cooking meals, etc..

What a Civilisation Manual should NOT contain:

  • Advertising
  • References to Gilligan’s Island
  • Everything – put in the most useful and if you have time add more.

What a Civilisation Manual should contain:

  • Very brief justifications of suggestions – it’s not a history book, it’s a survival book. It’s good to reassure the reader of the thought which goes into each of the suggestions in the book. Such as, if X happens to a person, cut their leg off. Briefly describing blood poisoning might be more reassuring.
  • Tried and tested procedures and instructions – can a 10-year-old kid work it out, or does it require an academic professor? and do you replace the palm frond roof monthly or yearly?
  • Many appendices:
    • A roadmap to digital civilisation – showing a tree of pre-requisite steps and sections on achieving each of the steps.
    • Recipes – Particularly useful when all you’ve got is coconuts and fish. How do you clean a fish?
    • Inter-language Dictionary – who knows who you’ll be with.
    • Plant Encyclopaedia – Identification of and uses for plants.
    • Animal  Encyclopaedia – Do I cuddle the bear?
    • Health Encyclopaedia – How do I deliver the baby?

And an example of chapters:

  • Atomic coffee maker designed by Giordano Robbiati
    Image via Wikipedia

    Something like “Don’t panic, breathe… you took the right book, in 5 years you’ll have a coffee machine again”

  • Chapter 1: Basic Needs – You’ll find out about these first, food, water, shelter.
  • Chapter 2: Politics and Planning – Several solutions for governing the group should be provided to choose from, a bit like a glossy political catalogue. It won’t contain things like Dictatorship, Monarchy. More like Set Leader, Rotating Leader or The Civilisation Manual is our leader. Planning will mostly be pre-worked in the appendix, where technology succession is described with expected timelines for each item.
  • Chapter 3: Power  – No not electricity, power. This section explains its importance and how to harness power, from wind/water for milling to animals for plowing. Of course the progression of civilisation would eventually lead to electricity.
The book should also contain several pencils, many blank pages and maybe we could sneak it a razor blade. This doesn’t break the rules of only being allowed to have a book. Publishers are always including CD’s and bookmarks…
I think it would be interesting anyway…
Enhanced by Zemanta

Revisiting DIDO Wireless

A wireless icon
Image via Wikipedia

I’ve had some time to think about the DIDO wireless idea, and still think it has a very important part to play in the future – assuming the trial conducted of 10 user nodes is truthful. Before I explore the commercial benefits of this idea, I will first revisit the criticisms as some have merit, and will help scope a realistic business case.

Analysis

Weaknesses

  • One antenna per concurrent node – The trial used 10 antenna for 10 user nodes. Each antenna needs a fixed line or directional wireless backlink – this would imply poor scalability of infrastructure. [Update: This is likely so, but Artemis claim the placement of each antenna can be random – whatever is convienient]
  • Scalability of DIDO – We are told of scaling up to 100s of antenna in a given zone. I question the complexity of the calculations for spatial dependent coherence, I believe the complexity is exponential rather than linear or logarithmic. [Update: Artemis pCell website now claims it scales linearly]
  • Scalability of DIDO controller – Given the interdependence on signals, is the processing parellelisable? If not this also limits the scale of deployment. [Update: Artemis claim it scales linearly]
  • Shannon’s Law not broken – The creators claim breaking the Shannon’s law barrier. This appears to be hyperbole. They are not increasing the spectrum efficiency, rather they are eliminating channel sharing. The performance claims are likely spot on, but invoking “Shannon’s Law” was likely purely undertaken to generate hype. Which is actually needed in the end, to get enough exposure for such a revolutionary concept.

Neutral

Discussion surrounding neutralised claims which may be reignited, but are not considered weaknesses or strengths at this point in time.

  • Backhaul – Even though the antenna appear to require dispersed positioning, I don’t believe that backhaul requirements to the central DIDO controller need to be considered a problem. They could be fixed line or directional wireless (point to point). [Update: This is not really a problem. Fibre is really cheap to lay in the end for backhaul, it’s most expensive for last-mile. Many Telcos have lots of dark fibre, not being used and Artemis is partnering with Telcos, rather than trying to compete with them]
  • DIDO Cloud Data Centre – I take this as marketing hyperbole. Realistically a DIDO system needs a local controller, all other layers above such a system are distractions from the raw technology in question. And as such, the communication links between the local controller and antenna need not be IP transport layer links, but would rather be link layer or even physical layer links.
  • Unlimited number of users – Appears to also be hyperbole, there is no technological explanation for such a sensational claim. We can hope, but not place as Pro until further information is provided. [Update: It does scale linearly, so this is a fair claim when compared to current Cell topology or if pCell was was limited to exponential processing load]
  • Moving User Nodes – Some may claim that a moving node would severely limit the performance of the system. However this pessimistically assumes a central serial CPU based system controls the system (a by-product of Reardens “Data Centre” claims). In reality I believe it’s possible for a sub-system to maintain a matrix of parameters for the main system to encode a given stream of data. And all systems may be optimised with ASIC implementation. Leaving this as a neutral but noteworthy point.
  • Size of Area of Coherence – Some may claim a problem with more than 1 person in an area of coherence, assumed to be around one half wavelength. How many people do you have 16cm away from you (900Mhz)? Ever noticed high density urbanisation in the country? (10-30Mhz for ionosphere reflection – <15M half wavelength) [Update: demonstrations have shown devices as close as 1cm away from each other – frequency may still be a limiting factor of course, but that is a good result]
  • DIDO is MIMO – No it’s very similar, but not the same and is likely inspired by MIMO. Generally MIMO is employed to reduce error, noise, multipath fading. DIDO is used to eliminate channel sharing. Two very different effects. MIMO Precoding creates higher signal power at a given node – this is not DIDO. MIMO Spatial multiplexing requires multiple antenna on both the transmitter and receiver, sending a larger bandwidth channel via several lower bandwidth channels – DIDO nodes only need one antenna – this is not DIDO. MIMO Diversity Coding is what it sounds like, diversifying the same information over different antenna to overcome wireless communication issues – this is not DIDO. [Update: Artemis and the industry and now standardising calling it a C-RAN technology]
  • 1000x Improvement – Would this require 1000 antenna? Is this an advantage given the amount of antenna required? MIMO is noted to choke with higher concurrency of uses. Current MIMO systems with 4 antenna can provide up to 4x improvement – such as in HSPDA+. Is MIMO limited in the order of 10s of antenna? Many many questions… [Update: This is likely so, but Artemis claim the placement of each antenna can be random – whatever is convenient]

Strengths

  • Contention – Once a user is connected to a DIDO channel, there is no contention for the channel and therefore improved latency and bandwidth.
  • Latency – Is a very important metric, perhaps as important as bandwidth. Latency is often a barrier to many innovations. Remember that light propagates through optical fibre at two-thirds the speed of light.
  • Coverage – It seems that DIDO will achieve coverage and field less black spots than what is achievable with even cellular femtocell. Using new whitespace spectrum, rural application of pCell would be very efficient, and if rebounding off the Ionosphere is still feasible, the answer to high speed, high coverage rural internet.
  • Distance – DIDO didn’t enable ionosphere radio communications, but it does make ionosphere high bandwidth data communication possible. Elimination of inter-cell interference and channel sharing make this very workable.
  • Physical Privacy – The area of coherence represents the only physical place the information intended for the user can be received and sent from. There would be potential attacks on this physical characteristic, by placing receivers adjacent to each DIDO antenna, and mathematically coalescing their signals for a given position. Of course encryption can still be layered over the top.
  • Bandwidth – The most obvious, but perhaps not the most important.
  • [New] Backward Compatibility – Works with existing LTE hardware in phones. Works better if using a native pCell modem with better latency performance particularly. Seamless handoff to cell networks, so it can co-operate.
  • [New] Wireless Power – Akbars (See Update below) suggested this technique could be used for very effective Wireless Power, working over much larger distances than current technology. This is huge!

Novel Strength

This strength needed particular attention.

  • Upstream Contention Scheduling – The name of this point can change if I find or hear of a better one. (TODO…)

Real World Problems

Unworkable Internet-Boost Solutions

I remember reading of a breakthrough where MEMS directional wireless was being considered as an internet boost. One would have a traditional internet connection and when downloading a large file or movie, the information would be sufficiently cached in a localised base station (to accommodate a slow backlink or source) and then forwarded to the user as quickly as possible. This burst would greatly improve download times and a single super speed directional system would be enough to service thousands of users given its’ extreme speed and consumers limited need for large transfers. Of course even such a directional solution is limited to line of sight, perhaps it would need to be mounted on a stationary blimp above a city…

Mobile Call Drop-outs

How often do you find yourself calling back someone because your call drops out? Perhaps it doesn’t happen to you often because you’re in a particularly good coverage area, but it does happen to many people all the time. The productivity loss and frustration is a real problem which needs a real solution.

Rural Service

It is very economical to provide high-speed communication to many customers in a small area, however when talking of rural customers the equations are reversed. Satellite communication is the preferred technology of choice, but it is considerably more expensive, is generally a lower bandwidth solution and subject to poor latency.

Real World Applications

The anticipated shortcomings of DIDO technology need not be considered as deal breakers for the technology. The technology still has potential to address real world problems. Primarily we must not forget the importance/dominence of wireless communications.

Application 1: A system could be built such that there may be 10 areas of coherence (or more), and can be used to boost current technology internet connections. One could use a modest speed ADSL2+ service of 5Mbps and easily browse the bulk of internet media {Text, Pictures} and then still download a feature-length movie at gigabit speeds when downloaded. This is a solution for the masses.

Application 2: DIDO allows one spectrum to be shared without contention, but that spectrum need not be a single large allocation of spectrum, it could mean a small (say 512Kbps) but super low latency connection. In a 10 antenna system, with 20Mhz of spectrum and LTE-like efficiency this could mean 6000 concurrent active areas of coherence. So it would enable very good quality mobile communication, with super low latency and practically no black-spots. It would also enable very effective video conferencing. All without cellular borders.

Applications 3 and 4: The same as Applications 1 and 2, but using a long-range ionosphere rural configuration.

Conclusions

We still don’t know too much about DIDO, the inventors have surrounded their idea with much marketing hype. People are entitled to be cautious, our history is littered with many shams and hoaxes, and as it stands the technology appears to have real limitations. But this doesn’t exclude the technology from the possibility of improving communication in the real world. We just need to see Rearden focus on finding a real world market for its’ technology.

UPDATE

  • [2017-01-10] Finally, the hint text has dissappeared completely, to be replaced with
    • “supports a different protocol to each device in the same spectrum concurrently” – following up on their last update
    • “support multiple current and future protocols at once.” – this is a great new insight. They have right up top, that pCell supports 5G, and future standards. So without considering the increased capacity, customers don’t need to keep redeploying new hardware into the field.
    • “In the future the same pWave Minis will also support IoT” – there are standards floating around, and what better way to implement security for IoT, than physically isolated wireless coherence zones, and perhaps very simplistic modulation.
    • “precise 3D positioning” – This confirms one of my predictions, pCell can supercharge the coming autopilot revolution
    • “and wireless power protocols” – as I always suspected. However, it still seems impractical. This is likely just a candy-bar/hype statement.
    • “Or in any band from 600 MHz to 6 GHz” – it’s interesting to learn this specification – the limits of typical operation of pCell. I note they have completely abandoned long-wave spectrum (for now at least).
    • “pWave radios can be deployed wherever cables can be deployed” – I still think fibre/coax is going to be necessary, wireless backhaul is unlikely to be scalable enough.
    • “Typically permit-free” – does this refer to the wireless signal I wonder? Very interesting if so. It could also refer carrier licensing, because you’re only carrying data, information is only deduced back at the data centre.
    • “can be daisy-chained into cables that look just like cable TV cables” (from Whitepaper) – so perhaps long segments of coax are permitted to a base-station, but that base-station would likely require fibre out.
    • “pCell technology is far less expensive to deploy or operate than conventional LTE technology” – they are pivoting away from their higher-capacity message, now trying to compete directly against Ericson, Huawei, and others.
  • [2016-02-25] pCell will unlock ALL spectrum for mobile wireless. No more spectrum reservations. pCell could open up the FULL wireless spectrum for everyone! I hope you can grasp the potential there. Yesterday I read a new section on their website: “pCell isn’t just LTE”. Each pCell can use a different frequency and wireless protocol. This means you can have an emergency communication and internet both using 600Mhz at the same time meters away! In 10 years, I can see the wireless reservations being removed, and we’ll have up to TERABITS per second of bandwidth available per person. I’m glad they thought of it, but this is going to be the most amazing technology revolution of this decade, and will make fibre to the home redundant.
  • [2015-10-03] It’s interesting that you can’t find Hint 1 on the Artemis site, even when looking back in history (Google), in fact the date of 2015-02-19 it reads “Feb 19, 2014 – {Hint 2: a pCell…”, which is strange given my last update date below. Anyway the newest Hint may reveal the surprise:
    • “Massless” – Goes anywhere with ease
    • “Mobile” – outside your home
    • “Self-Powered” – either Wireless Power (unlikely) or to wit that this pCell is like some sort of Sci-Fi vortex that persists without power from the user.
    • “Secure” – good for privacy conscious and/or business/government
    • “Supercomputing Instance” – I think this is the real clue, especially given Perlman’s history with a Cloud Gaming startup previously.
    • My best guesses at this stage in order of likelihood:
      • It’s pCell VR – already found in their documentation, and they just haven’t updated their homepage. VR leverages the positioning information from the pCell VRI (virtual radio instance) to help a VR platform both with orientation as well as rendering.
      • Car Assist – Picks up on “Secure” and the positioning information specified for VR. VR is an application of pCell to a growing market. Driverless is another growing market likely on their radar. Driverless cars have most trouble navigating in built up, busy environments and particularly round abouts. If pCell can help in any way, it’s by adding a extra absolute position information source this cannot be jammed. Of course the car could also gain great internet connectivity too, as well as tracking multiple vehicles centrally for more centralised coordination.
      • Broader thin-client computing, being beyond “just communications”, although one can argue against that – pCell is communications an enabler. This would include business and gaming.
      • Emergency Response. Even without subscription it would be feasible to track non-subscribers location.
  • [2015-02-19] Read this article for some quality analysis of the technology – http://archive.is/ZTRhf [Archive Link] – Old broken link: http://akbars.net/how-steve-perlmans-revolutionary-wireless-technology-works-and-why-its-a-bigger-deal-than-anyone-realizes.html
  • [2015-02-19] Artemis have on their website – “Stay tuned. We’ve only scratched the surface of a new era.…{Hint: pCell technology isn’t limited to just communications}’ – I’m gunning that this will be the Wireless Power which Akbars suggested in his blog article. [Update 2015-10-03 which could be great for electric cars, although efficiency would still be quite low]
  • [2016-06-02] Technical video from CTO of Artemis – https://www.youtube.com/watch?v=2ETMzxkyTv8
    • Better coverage – higher density of access points = less weak or blackspots
    • When there are more antenna than active users, quality may be enhanced
    • Typical internet usage is conducive for minimising number antenna for an area
    • pCell is not Massive MIMO
    • pCell is Multi User Spatial Processing – perhaps MU-MIMO [see Caire’03, Viswanath’03, Yu’04]
    • According to mathematical modelling, densely packed MIMO antenna cause a large radius of coherent volume. Distributed antenna minimises the radius of coherent volume. Which is intuitive.
    • see 4:56 – for a 3D visulasation of 10 coherent volumes [spatial channels with 16 antennas. Antenna are 50m away from users – quite realistic. Targetting 5dB sinr.
    • pCell Data Centre does most of the work – Fibre is pictured arriving at all pCell distribution sites.
    • 1mW power for pCell, compared to 100mW for WiFi. @ 25:20
Enhanced by Zemanta

What the… Payroll tax?

I didn’t really notice the GST debate, except being annoyed at all prices increasing when GST was introduced (I was in High School). It turns out the a major reason for it’s introduction was to eliminate many state taxes. One of these taxes being Payroll tax….

Have a look: http://www.sro.vic.gov.au/sro/SROnav.nsf/LinkView/8AFF7B9FB4EB3733CA2575D20022223D5DB4C6346AF77ABBCA2575D10080B1F7

It turns out that if I employ too many people I will have to pay the state 4.9% tax on all the gross wages paid to my employees – including Superannuation! Not only is this a disincentive to employ, it’s also yet another administrative burden which limits growth. I hear it all the time, that ultimate success requires flexibility and scalability – Payroll tax is an ugly and unnecessary burden.

Sure we can’t just pull such revenue out from under the states, but it can be replaced with revenue from another more efficient tax – such as GST. At just 10% our GST is relatively low compared to other countries, in Europe some countries have a GST or VAT of 25%.

So why not simply increase GST? Consumers, AKA voters are the end-users and effectively the ones who pay the tax. Even though consumers can ultimately pay less in the long run, because the companies no longer need to pay payroll tax, the whole economy changes. Smaller business that didn’t previously pay Payroll tax are effectively charging their customers more, because they cannot discount from regained revenue from a dropped tax. Small changes to the rate over a long time may work best with matched reductions in payroll tax in the states. But in summary GST rate increases are political poison for non-business owning voters.

Another issue is fraud. As GST increases, the returns on VAT fraud become greater. Countries such as Sweden (25%) and the UK (20%) are subjected to simple but hurtful frauds which effectively steal from GST revenue. It basically works by having a fake company be liable to pay GST, and a legitimate company entitled to the return. The fake company goes bankrupt. As the GST rate increases, the amount of payback to such frauds increases, encouraging more incidents. It seems that any macro economic change, either short term (Government Stimulus) or long term (Tax Reform), opens the door for corruption and rorting. If the GST rate is to be increased, the right legislation needs to be in place to prevent such fraud.

So in the end the ultimate way for a business to overcome Payroll tax is to innovate good products which provide a comfortable return and innovate inside the business to improve internal efficiency, reducing the need to hire as many staff resulting in the ability to maintain a competitive edge.

DIDO – Communication history unfolding?

First of all I just want to say – THIS MAY BE HUGE!!

I read this article last night: http://www.gizmodo.com.au/2011/08/dido-tech-from-quicktime-creator-could-revolutionise-wireless-broadband/

In plain english, a company has discovered a way to dramatically improve mobile internet. It will be 5 – 10 years before it’s commercialised, however I believe it will happen sooner, with many realising just how revolutionary it will be, investing more money, attracting more resources to get it done sooner.

I am not a representative of the compnay, but have been involved in understanding and pondering wireless technology, even coming up with faster and more efficient wireless communication concepts, but none as ground-breaking as this one. I don’t claim to know all the details for certain, but having read the whitepaper I beleive I can quite accurately assume many details and future considerations. Anyway I feel it’s important for me to help everyone understand it.

How does it work (Analogy)?

Imagine walking down the street, everything is making noise, cars, people, the wind. It’s noisy, someone in the distance is trying to whisper to you. Suddenly all the noise dissappears, and all you can hear is that person – clearly. This is because someone has adjusted all the sounds around you to cancel out, leaving just that persons voice.

How does it work (Plain English)?

When made available in 5-10 years:

  • Rural users will have speeds as fast as in CBDs, receving signals from antennas as far as 400km away!
  • In cities there will need to be several antennas in within ~60km of you
    • today there are so many required for mobile internet, the number will be reduced…
    • the number of antennas per mobile phone towers and buildings will be reduced to just one.
  • there will be a central “server” performing the mathematical calculations necessary for the system.

The most technical part (let’s break it down):

  1. Unintended interference is bad (just to clarify and contrast)…
  2. DIDO uses intereference, but in a purposeful way
  3. DIDO uses multiple antennas, so that at a particular place (say your house), they interfere with each other in a controlled way, leaving a single channel intended for you.
  4. It’s similar to how this microphone can pick up a single voice in a noisy room – http://www.wired.com/gadgetlab/2010/10/super-microphone-picks-out-single-voice-in-a-crowded-stadium/
    but a little different…

How does it work (Technical)?

I have been interested in two related concepts recently:

  1. Isolating a single sound in a noisy environment – http://www.wired.com/gadgetlab/2010/10/super-microphone-picks-out-single-voice-in-a-crowded-stadium/
  2. I saw an interview with an ex-Australian spy who worked at a top secret facility in Australia in co-operation with the US. The guy was releasing a book revealing what he can. From this facility he spied on radio communications around the world. I wondered how and then figured they likely employ the “super microphone” method.

When I heard about this technology last night, I didn’t have time to look at the whitepaper, but assumed the receivers may have “super microphone” sort of technology. It turns out the inverse (not opposite) is true.

Scenario:

User A’s radio is surrounded by radios from DIDO. The DIDO server calculates what signals need to be generated from the various radios such that when converging on User A, they “interfere” as predicted to leave the required signal. When there are multiple users the mathematical equations take care of working out how to converge the signals. As a result, the wireless signal in the “area of coherence” for the user, is as if the user has the full spectrum 1:1 to an external wireless base station.

Implications for domestic backhaul

There would need to be fibre links to each of the antennas deployed, but beyond that remaining backhaul and dark fibre will rapidly become obsolete. DIDO can reach 400km in the rural mode, bouncing off the ionosphere and still maintaining better latency than LTE at 2-3ms.

Physical Security?

We hear about quantum communication and the impossibility to decipher the messages. I believe a similar concept of physical security can be achieved with DIDO. Effectively DIDO provisions areas of coherency. Areas in 3D space where the signals converge, cancelling out signal information intended for other people. So effectively you only physically receive a single signal on the common spectrum, you can’t physically see anyone else’s data, unless you are physically in the target area of coherency. This however, does not mean such a feature enables guaranteed privacy. By deploying a custom system of additional receivers that can sit outside the perimeter of your own area of coherency, you can sample the raw signals before they converge. Using complex mathematics and empowered with information of the exact location of the DIDO system antennas, one would be theoretically able to single out the individual raw signals from each antenna, and the time of origin and then calculate the converged signal at alternative areas of coherence. This is by no means a unique security threat. Of course one could simply employ encryption over their channel for secrecy.

This doesn’t break Shannon’s law?

As stated in their white paper, people incorrectly apply the law to spectrum rather than channel. Even before DIDO, one could use directional wireless from a central base station and achieve 1:1 channel contention (but that’s difficult to achieve practically). DIDO creates “areas of coherency” where all the receiving antenna picks up is a signal only intended for them.

Better than Australia’s NBN plan

I’ve already seen some people attempt to discredit this idea, and I believe they are both ignorant and too proud to give up their beloved NBN. I have maintained the whole time that wireless technology will exceed the NBN  believers interpretation of Shannon’s law. Remember Shannon’s law is about *channel*, not *spectrum*. DIDO is truly the superior option, gigabit speeds with no digging! And clearly a clear warning that governments should never be trusted with making technology decisions. Because DIDO doesn’t have to deal with channel access, the circuitry for the radios is immensely simplified. The bottleneck will likely be the ADC and DACs, of which NEC has 12bit 3.2Giga-sample devices (http://www.physorg.com/news193941421.html). So multi-terabit and beyond is no major problem as we wait for the electronic components to catch up to the potential of wireless!

CRITICISMS UPDATE:

  • One aspect to beware of is the potential need for 1:1 correlation of antennas from the base station and users. I can’t find any literature yet which either confirms or denies such a fixed correlation. But the tests for DIDO used 10 users and 10 antennas.
  • If there must be one antenna per user this idea isn’t as earth shattering as I would hope. However there would still be relevance. 1) It still achieves 100% spectrum reuse, 2) all the while avoiding the pitfalls of centralised directional systems with beam-forming where obstacles are an issue. 3) Not to mention the ability to leverage the ionosphere for rural applications – very enabling.
  • After reading the patent (2007) – I see no mention of the relationship between AP antennas and the number of users. However I did see that there is a practical limit of ~1000 antennas per AP. It should be noted that if this system does require one antenna per user, it would still be very useful as a boost system. That is, everyone has an LTE 4G link and then when downloading a video, get the bulkier data streamed very quickly via DIDO. (The amount of concurrent DIDO connections being limited by the number of AP antennas)
  • The basis for “interference nulling” discussed in 2003 by Agustin et al. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.2535
  • Removed many  ! at the top, to symbolise the potential for disappointment.
  • Hey there’s a spell check!
  • Have a look here for whirlpool discussion: http://forums.whirlpool.net.au/forum-replies.cfm?t=1747566

Memorable IPv6 Addresses

Back in Nov 2009, I foresaw that IPv6 addresses would become a menace to memorise. So I had a crack at improving memorability of such addresses, See http://blog.jgc.org/2011/07/pronounceable-ipv6-addresses-wpa2-psk.html?m=1. The basic idea is that sounds which make up words or resemble words are much easier to remember than individual digits. I was actually thinking about this idea last night, how it could be applied to remembering strong passwords.

This morning I got an email from a collegue who pointed out this: http://www.halfbakery.com/idea/IPv6_20Worded_20Addresses#1260513928. I don’t believe the scheme used here is as memorable as mine, but it sounds like other people are having similar ideas.

Back to my thoughts last night on more memorable passwords. We know we’re supposed to use Upper and Lower case, special symbols etc. But even then you’re not using the full 64bit capacity of the full 8 character recommended string. To use my scheme to memorise more secure passwords, you would simply use my tool.

I made a video 🙂

[youtube=http://www.youtube.com/watch?v=f60GGxPskG4]

Phishing Drill – Find your gullible users

Do you remember participating in fire drills in school? I remember them fondly – less school work for the day. I also remember earthquake drills when I went to school in Vancouver for a year. So what to drills do? They educate us about the signs and signals to look out for, and then how to react. I believe spam filters work fairly well (that was a sudden change of subject). I use gmail and spam detection is built-in, however I still do receive the occasional spam message. Education of those who fall for spam and phishing is an important factor in reducing associated problems and scams. If all internet users had their wits about them, we could put spammers and phishers out of the business – and most door to door salesmen. So how do we achieve this without million dollar advertising campaigns?…. Drills. Spam/Phishing Drills, or to be more generic, perhaps Internet Gullability Drills (IGD – everyone loves an initialism).

How do you drill the whole of the Internet? “Attention Internet, we will be running a drill at 13:00 UTC”…. probably definitely not. My proposed method involves every web application, which liaises with their customers by email or is at risk of being spoofed in a phishing scam, to have their own private drills. Such a drill would involve sending out an email message which resembles a real life phishing/spam email. Each time different variables could be used – email structure, sender email, recipients name, a direct link to a spoof site. In any case the drill should be able to detect those who fall for the drill. They can then be notified of their stupidity in the matter in a more delicate way than most would – “Haha – you just fell for our IGD you loser!”, is way off.

Ultimately a Gullability prevention centre website would exist which the users could be referred to, so they may refresh themselves in current threats, how to identify them and how to react. Quite a simple solution, and maybe I’m not the first one to think about it, I didn’t bother searching the Internet for a similar idea…

 

IPTV – How to conquer the livingroom

It’s embarrassing watching the video entertainment products coming out at the moment. They’re all trying to come up with the winning combination, and no one is succeeding – even Apple failed with their Apple TV product. The problem is that their trying to invent some expensive lounge room swiss army knife, when what customers need is simplicity. They are failing to see the primary barrier – no one has IP enabled TVs.

Here’s my forumula to conquer the livingroom:

  1. All new TVs should be IPTV enabled with a gigabit ethernet port – this may include an OnScreen display to surf the web etc., but basically it should support “Push IPTV”
  2. IPTV Adaptor – Develop a low cost IPTV to TV device – which simply supports “Push IPTV”. Eg. Converts Packets into an HDMI signal.
    • I want a company to develop an ASIC
    • It accepts converts streamed video content (of the popular formats)
    • The chip supports outputs into HDMI,  Component, S-Video or Composite
    • The chip is implemented into 4 different products: IP-HDMI, IP-Component,IP-S-Video, IP-Composite

With that barrier clear, you don’t need to fork out to buy another gadget for you living room, you simply leverage your PC or laptop, pushing streaming video to any display in your home. When you connect your IPTV Adaptor to the network, it announces its self and all media devices and media software can then push streaming video to that display.

So now you can use your Laptop / iPad as a remote. You drag your show onto your lounge room and away you go! While everyone is watching on the TV, you can see thumbnail previews of other IPTV shows currently showing – so your channel surfing doesn’t annoy everyone else 🙂

Super city: Pushing the technology boundaries

In the last article I discussed the concept of Technology Development Zones. This concept can be taken all the way with what we can call a super city. I started with this idea after thinking, what could I do with $1bn. After finishing with dreams of a house on the moon or a medieval castle in the mountains, I started jotting down some points.

Why can’t we start building an entirely new, entirely futuristic city? When you start from scratch, you can benefit from having no boundaries.

Australia so happens to be the perfect place for such an idea. A good economy. A housing shortage.

The Detail

I’ll try to keep it short

  • The city is a sky scraper – providing spectacular views for all residents. ie. 500m high, 500m wide, 40m deep, accommodating a little less than 50,000 people.
    • This reduces the human footprint, with all services contained within a single building. The only reason for people to leave the building is for recreation and farming.
  • It’s located at least 300km from Melbourne – reducing city sprawl
  • But it’ll only take you 30mins to travel 300km in any direction – see Transport below
  • Implements a “Base Luxury Standard”. A body corporate scheme, to operate on economies of scale.
    • Logistics – Cater for all logistics problems in one solution – Let’s call it a Transporter
      • A 3D “elevator” system
      • Elevator capsules which can carry up to 10 people and a few tonne
      • Can travel up/down, left/right, and back/forth
      • EG. Move from the first floor at the front of the building in the middle laterally, to the top floor at the back of the building on the left without “changing elevators”
      • Transporter capsules travel laterally along what would normally be the hallway for walking to your apartment
        • When travelling laterally to an apartment, the transporter doors and apartment doors open together
        • In an emergency, the apartment doors can be manually opened and occupants can walk down the lateral transporter shaft
          • Manual overrides are detected by the system and transporters for the entire floor are speed reduced and obstacle detection is activated to avoid collision with people.
      • Keep in mind that in an emergency, transporters should still be operational laterally, as there is no danger of dropping.
      • Transporters are not just used to transport people but also:
        • Food – Washable containers, transport prepared food, cutlery etc.. from kitchens, used containers are returned to be washed.
        • Heating / Cooling – Heat bricks or molten salts and LN2 packs for refrigeration, air conditioning and heating
          • No pipes = less cost, no maintenance
        • Water – A set of dedicated water transporters are used to fill small reservoir in each apartment
          • No pipes = less cost, no maintenance
          • Bathroom and commercial facilities do have pipes
        • General Deliveries – Furniture, clothing, presents, mail, dirty/washed clothes etc…
        • [Not Data] – That’s fixed line or radio wireless, can’t just transport hard disks, latency is much too slow 🙂
    • Food (Diet) – Set base cost for food every week which is pooled and food providers are then paid for. To start off with, fully automated systems are desirable to peel, slice, etc.., it’s possible to have a fully automated catering system which deals with 80% of meals. The final 20% is catered for by Chefs who still use machines for preprocessing – and are an additional cost. Eg. $5 / person per day for any basic meal and additional for specialist meals.
    • Climate – Instead of having thousands of small air conditioner compressor inverters in every apartment, have 3 very large and very efficient heat pumps and then efficiently transport the head/cold. Each apartment then has their own fan and climate control system where Liquid Nitrogen and Heat bricks are utilized, a simple refrigerator and freezer also run off the Liquid Nitrogen, removing two more compressors.
    • Data – Fibre runs to each apartment, and then inside is patched to different equipment. A fibre runs to the TV and Ethernet over Power is provisioned and isolated for the apartment so that every appliance and electrical device is controllable. Wireless systems are a feasible alternative.
    • Hygiene – Several banks of showers and toilets on each floor, the transporter takes you to the next available toilet or shower as required. So instead of having a toilet and shower taking up space in each apartment that only gets used 100th of the time in a day, you can be more efficient with a central bank of them. The showers and toilets are self cleaning, with minor cleaning cycles after every use and major clean cycles as required (eg. every half day).
    • Transport – Within the building, the transporter can take you anywhere, but what makes a remote city work well is fast transport to already established city centres. Mono rail is quite expensive and still relatively slow and inefficient when compared to air travel over long distances (about 800Km). There is plenty of scope for new transport ideas:
      • Air evacuated tunnel rail (Super sonic speeds without the risk and fuel of staying aloft)
      • Personal air craft (looking more like aeroplanes and possibly launched by ground based launcher, not those ridiculous artist impressions of cars with 4 loud, fuel guzzling turbine engines)
      • Automated Electronic Vehicle transport
      • Community car pool (basically like small automated buses which only travel along a particular route or highway)
    • Menial Tasks – Clothes/Dish washing is fully centralized and automated. Less tedious work for residents means more time to live – a higher quality of life.
    • Shelter – No one truly owns their space, they can either hold (pay around $50,000 for their entire life) or rent (interest of $50,000 over lifetime)

Conclusion

With a Super city, developed countries have an opportunity to push past the so-called “Modern” boundaries of today and exceed peoples expectations with a completely reinvented society and lifestyle. Super cities are not just technology test beds, they also offer citizens cheaper living for a greater quality of life, less stress – freedom from menial tasks, very short waits for transport and short travelling time.

But even developing countries could stand to benefit. The cost effectiveness of super cities and the efficient systems can help pull poor countries out of poverty. And various novelties could be redeployed into existing cities.